Product Description

Slewing drive worm gear gearbox drilling ring crane
 

Model

SC17-2

Place of Origin

HangZhou,China

Brand

Coresun Drive

Type

Dual Worm

Material

42CrMo,50Mn

Output Torque

21KN.m

Tilting Moment Torque

135.6KN.m

Holding Torque

72.3K N.m

Static Axial Rating

970KN

Static Radial Rating

390KN

Dynamic Axial Rating

235KN

Dynamic Radial Rating

205KN

Gear Ratio

102:1

Efficiency

40%

Rotation drive slewing drive, it is a kind of integration of driving power source of the week rotary reducer drive mechanism, its slewing bearing as transmission follower and adhesion mechanism, through the rotary bearing inner and outer circle a circle on the initiative of the cover, driving source and shell, and the other a circle both as a follower, and the connection of the base as driven working parts, so using the rotary bearing itself is the week characteristics of rotary joints, efficient allocation of driving power source and the main transmission parts, make it become a kind of rotary, slow down and drive function in a body and at the same time, simple structure, manufacture and maintenance convenient universal reduction drive mechanism.

According to the variable speed drive of rotation drive form, can be divided into type rotary gear rotation drive and the worm and worm wheel drive, inherit the characteristics of gear transmission and worm gear and worm drive each, are the 2 kinds of rotation drive can be adapted to high speed and low speed applications, in terms of bearing capacity, performance is superior to the tooth worm gear and worm type, and when envelope worm drive is used, its bearing capacity, deformation resistance and transmission have further improve rigidity, but the worm gear and worm type rotary drive in efficiency is inferior to tooth rotation drive.

Slewing drive is consist of slewing bearing,worm shaft,housing,bearing,motor and so on. Motor drive the worm shaft, the outer ring of slewing bearing will rotate, the outer ring output the torque through flange while the inner ring of slewing bearing is fixed in housing.Slewing drive is able to sustain more axial load, radial load and tilting moment.Turntable or frame rotate at azimuth and elevation driven by slewing drive.Typical applications include solar trackers, wind turbines, satellite and radar dishes, truck cranes, man lifts, utility equipment, hydraulic equipment attachments, oil tool equipment, tire handlers, digger derricks, and automotive lifts.
 

Rotary drive slewing drive worm gear is a perfect combination of turbine worm products, worm ring surface envelope form, its tooth contact area is large, so the transmission torque is large, stable operation.

1. Our manufacturing standard is according to machinery standard JB/T2300-2011, we also has been found the efficient Quality Management Systems (QMS) of ISO 9001:2015 and GB/T19001-2008.

2. We devote ourselves to the R &D of customized slewing bearing with high precision,special purpose and requirements.

3. With abundant raw materials and high production efficiency, the company can supply products to customers as quickly as possible and shorten the time for customers to wait for products.

4. Our internal quality control includes first inspection, mutual inspection, in-process quality control and sampling inspection to ensure product quality. The company has complete testing equipment and advanced testing method.

5. Strong after-sales service team, timely solve customer problems, to provide customers with a variety of services.

Production Photo and Application

Aerial working platform slewing drive turntable
Truck mounted crane slewing gear motor
Timber grab worm drive slewing ring Dual worm slewing drive for drilling rig


Coresun Drive makes the holding torque testing to ensure the quality and safety factor on our slewing drive and bearing.Quality is our foundation for the long-term development.

Slewing Drive Testing Report

CONTACT US

It is sincerely looking CHINAMFG to cooperating with you for and providing you the best quality product & service with all of our heart!

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Holding Torque: 72.3kn.M
Tilting Moment Torque: 135.6kn.M
Output Torque: 21kn.M
Output Speed: 1rpm
Gear Ratio: 102:1
IP Class: IP65
Customization:
Available

|

Customized Request

worm gear

How do you maintain and service a worm gear?

Maintaining and servicing a worm gear is essential to ensure its optimal performance, reliability, and longevity. Regular maintenance helps identify and address potential issues before they escalate, minimizes wear, and extends the lifespan of the gear system. Here are some key steps involved in maintaining and servicing a worm gear:

  • Inspection: Conduct routine visual inspections of the worm gear system to check for any signs of wear, damage, or misalignment. Inspect the gear teeth, bearings, housings, and lubrication system. Look for indications of excessive wear, pitting, chipping, or abnormal noise during operation.
  • Lubrication: Ensure that the worm gear system is properly lubricated according to the manufacturer’s recommendations. Regularly check the lubricant levels, cleanliness, and viscosity. Monitor and maintain the lubrication system, including oil reservoirs, filters, and seals. Replace the lubricant at recommended intervals or if it becomes contaminated or degraded.
  • Tighten fasteners: Over time, vibrations and operational forces can cause fasteners to loosen. Regularly check and tighten any bolts, screws, or clamps associated with the worm gear system. Be cautious not to overtighten, as it may lead to distortion or damage to the gear components.
  • Alignment: Check the alignment of the worm gear system periodically. Misalignment can cause excessive wear, increased friction, and reduced efficiency. Adjust and realign the gears if necessary to ensure proper meshing and minimize backlash.
  • Cleaning: Keep the worm gear system clean and free from debris, dirt, or contaminants. Regularly remove any accumulated dirt or particles that may affect the gear performance. Use appropriate cleaning methods and solvents that are compatible with the gear materials.
  • Load monitoring: Monitor the load conditions of the worm gear system. Ensure that the gear is not operating beyond its rated capacity or encountering excessive shock loads. If needed, consider implementing load monitoring devices or systems to prevent overloading and protect the gear system.
  • Periodic inspection and testing: Schedule periodic comprehensive inspections and functional testing of the worm gear system. This may involve disassembling components, checking for wear, measuring gear backlash, and evaluating overall performance. Identify and address any issues promptly to prevent further damage or failure.
  • Professional servicing: For complex or critical applications, it may be beneficial to involve a professional service provider or gear specialist for more extensive maintenance or repairs. They can offer expertise in diagnosing issues, performing advanced inspections, and conducting specialized repairs or replacements.

It’s important to follow the manufacturer’s recommendations and guidelines for maintaining and servicing the specific worm gear system. Adhering to proper maintenance practices helps ensure the gear’s optimal performance, reduces the risk of unexpected failures, and maximizes its operational lifespan.

worm gear

How do you calculate the efficiency of a worm gear?

Calculating the efficiency of a worm gear involves analyzing the power losses that occur during its operation. Here’s a detailed explanation of the process:

The efficiency of a worm gear system is defined as the ratio of output power to input power. In other words, it represents the percentage of power that is successfully transmitted from the input (worm) to the output (worm wheel) without significant losses. To calculate the efficiency, the following steps are typically followed:

  1. Measure input power: Measure the input power to the worm gear system. This can be done by using a power meter or by measuring the input torque and rotational speed of the worm shaft. The input power is usually denoted as Pin.
  2. Measure output power: Measure the output power from the worm gear system. This can be done by measuring the output torque and rotational speed of the worm wheel. The output power is usually denoted as Pout.
  3. Calculate power losses: Determine the power losses that occur within the worm gear system. These losses can be classified into various categories, including:
    • Mechanical losses: These losses occur due to friction between the gear teeth, sliding contact, and other mechanical components. They can be estimated based on factors such as gear design, materials, lubrication, and manufacturing quality.
    • Bearing losses: Worm gears typically incorporate bearings to support the shafts and reduce friction. Bearing losses can be estimated based on the bearing type, size, and operating conditions.
    • Lubrication losses: Inadequate lubrication or inefficient lubricant distribution can result in additional losses. Proper lubrication selection and maintenance are essential to minimize these losses.
  4. Calculate efficiency: Once the power losses are determined, the efficiency can be calculated using the following formula:

Efficiency = (Pout / Pin) * 100%

The efficiency is expressed as a percentage, indicating the proportion of input power that is successfully transmitted to the output. A higher efficiency value indicates a more efficient gear system with fewer losses.

It is important to note that the efficiency of a worm gear can vary depending on factors such as gear design, materials, lubrication, operating conditions, and manufacturing quality. Additionally, the efficiency may also change at different operating speeds or torque levels. Therefore, it is advisable to consider these factors and conduct efficiency calculations based on specific gear system parameters and operating conditions.

worm gear

How do you choose the right size worm gear for your application?

Choosing the right size worm gear for your application involves considering several factors to ensure optimal performance and longevity. Here are the key considerations:

Load Requirements:

Determine the maximum load that the worm gear will need to transmit. This includes both the torque (rotational force) and the axial load (force along the axis of the gear). Calculate or estimate the peak and continuous loads that the gear will experience during operation. Consider factors such as shock loads, dynamic forces, and variations in load conditions. This information will help determine the required load-carrying capacity of the worm gear.

Gear Ratio:

Determine the desired gear ratio for your application. The gear ratio determines the speed reduction and torque multiplication provided by the worm gear system. Consider the specific requirements of your application, such as the desired output speed and the torque needed to drive the load. Select a worm gear with a gear ratio that meets your application’s requirements while considering the limitations of the available gear options.

Efficiency:

Consider the efficiency requirements of your application. Worm gears typically have lower efficiency compared to other types of gears due to the sliding action between the worm and worm wheel. If efficiency is critical for your application, choose a worm gear design and materials that offer higher efficiency, such as a double enveloping worm gear.

Space Constraints:

Evaluate the available space for the worm gear assembly in your application. Consider the dimensions of the worm gear, including the diameter, length, and mounting requirements. Ensure that the chosen worm gear can fit within the available space without compromising other components or functionality.

Speed and Operating Conditions:

Consider the operating speed and environmental conditions in which the worm gear will operate. Some worm gears have speed limitations due to factors such as heat generation and lubrication requirements. Ensure that the selected worm gear is suitable for the anticipated speed range and can withstand the temperature, humidity, and other environmental factors of your application.

Manufacturing Standards and Quality:

Select a worm gear that conforms to recognized manufacturing standards and quality requirements. Look for worm gears from reputable manufacturers that offer reliable and durable products. Consider factors such as material quality, surface finish, and precision in the gear manufacturing process.

By carefully evaluating these factors and considering the specific requirements of your application, you can choose the right size worm gear that meets your performance, load, and space requirements, resulting in a reliable and efficient gear system.

China factory Dual Worm Combined Slew Drive Worm Gear worm gear winchChina factory Dual Worm Combined Slew Drive Worm Gear worm gear winch
editor by CX 2024-03-30