Product Description

Small Precision Worm Gear for Machinery Part

Welcome to Visited Our Website: btslipring

ByTune
       This is ByTune Electronics Co., Ltd A Professional and Experienced manufacturer. We are committed oursleves to manufacturing precise metal & plastic parts,sheet metal,casting parts, CNC precise machined parts.
        ByTune Electronics  is ISO 9001: 2008 certified factory with 20 years CNC machining experience. Equipped with morn than 200 sets machines, such as CNC ( 3,4 and 5 axis), Vertical Machine Tool Integrating Turning with Milling, Auto-Drilling machine, Precise milling machine, Numerical Control Punch Press, Grinding machine, and so on…… With advanced machines, we could do all of the processions in one-stop: CNC Lathe, Milling, Drilling, Grinding, Punching, Bending,Casting, Forging, Stamping ,etc …
        We can supply professional OEM/ODM turning milling all kinds of Steel/plastic Parts with affordable price. Color anodizing and your logo laser available!

Details

Available materials Stainless steel, Steel, Aluminum, Alloy, Brass, Copper, Bronze, Nylon, Acrylic, Delrin, Teflon/POM, Torlon/PAI, Ultem etc
Process CNC milling and turning, drilling, grinding, bending, stamping, tapping
Tolerance 0.005mm~0.1mm
Surface Roughness  Ra1.6-3.2
DRW format  PDF/DWG/IGS/STP/ etc
Capacity 10,000pieces per month
MOQ 1-10pcs
QC System 100% inspection before shipment
Machining Scope 1). Equipment/Machinery     2). Medical & Technological parts 
3). The Automotive/motorcycle parts   4). The telecommunication parts
5). The power tool parts      6). Bicycle parts     7). Hardware
8). The agricultural parts
Payment term T/T ,PayPal, West Union
Surface treatment Anodizing, zinc/chrome/nickel/silver/gold Plating, Polish, Imitation, Heat treatment etc
Shipment Terms: 1) 0-100kg: air freight priority
2) >100kg: sea freight priority
3) As per customized specifications
Packing 1. Prevent from damage.
2. As customers’ requirements, in perfect condition.
3. Send the sample by express, 3~5 days door to door service.
Note: All parts are custom made according to customer’s drawings or samples, no stock.     If you have any parts to be made, please feel free to send your kind drawings/samples to us.

1. ByTune’s Advantages:
Quality guaranteed—1 year
Prompt delivery—1~2 week
Affordable price—Most competitive among industry
Superior service—response within 24 hours considering time difference
Effective shipment—DHL, UPS, or FedEx
Certification Approved—ISO,CE,FCC,ROHS
 
2.Main cooperators :

 
3. Advanced & High Technology Equipments:  

Part Size Bar capacity up to 2 ¾” diameter
Up to 50″ diameter
Equipment
 
Machine Quantity Capacity (diameter)
Okuma Captain L370
4 axis
28 2 3/4″ (70mm) bar,
10″ (500mm) blank
Okuma LB15
2 axis
28 1 5/8″ (42mm) bar,
10″ (250mm) blank
Hitachi-Seiki HVP20J
3 axis
18 1 5/8″ (42mm) bar,
10″ (250mm) blank
Doosan S280N
5 axis
25 1 5/8″ (42mm) bar,
50″ (1270mm) blank
Hardinge Super-Precision
2 axis
26 8″ (204mm) blank
Part Size ( CNC Milling and CNC Turning ) CNC Milling Parts (Max): Length 1030mm,Width 800mm, Height 750mm.
CNC Turning Parts (Max): Diamter 680mm,Length 750mm.The size of the above parts are machined in the workshop.
Typical Products Connectors, Cylinders, Ends,
Flanges, Housings, Precision shafts, Sheet,
Seals, Sleeve,  Lids, Bases…

4. Factory inspection:

       ByTune inspection center utilizes CMM (coordinate measuring machines), Projector, Roughness tester, Hardness gauges and countless varieties of micrometers, pin gages and calipers to ensure excellent customer satisfaction.

5. FAQ : 
Q1: I want to keep our design in secret, can we CHINAMFG NDA?
Sure, we do not display any customers’ design or show to other people, we can CHINAMFG NDA.

Q2: Can you advise on suitable materials for us?
A: Yes, we are very knowledgeable and can recommend the best grade materials for your application.

Q3: If I need the parts urgent, can you help?
Yes, we are here to help. Production time is flexible .If you need the parts urgent, please tell us the delivery time you need. We will do our best to adjust the production schedule priority.

Q4: Are you able to design or produce new products for us?
A: We are always willing to develop new products according to the clients’ requirements, we are experienced in CNC machining parts, so when you have samples or drawing needing a factory to develop for you, we will try our best to help you.
Product Pictures for ref.

WHY US ?

Advanced CNC machines& 20 years experienced CNC engineers
100% Quality inspection before shipment

Welcome to Visited Our Website: 
btslipring
 
 Look CHINAMFG to your inquiry! /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Condition: New
Certification: CE, RoHS, ISO9001, FCC,
Standard: DIN, ASTM, GB, ANSI, BS
Customized: Customized
Material: Metal
Application: Metal Recycling Machine, Metal Cutting Machine, Metal Straightening Machinery, Metal Spinning Machinery, Metal Processing Machinery Parts, Metal forging Machinery, Metal Engraving Machinery, Metal Coating Machinery, Metal Casting Machinery
Samples:
US$ 4/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

worm gear

How do you maintain and service a worm gear?

Maintaining and servicing a worm gear is essential to ensure its optimal performance, reliability, and longevity. Regular maintenance helps identify and address potential issues before they escalate, minimizes wear, and extends the lifespan of the gear system. Here are some key steps involved in maintaining and servicing a worm gear:

  • Inspection: Conduct routine visual inspections of the worm gear system to check for any signs of wear, damage, or misalignment. Inspect the gear teeth, bearings, housings, and lubrication system. Look for indications of excessive wear, pitting, chipping, or abnormal noise during operation.
  • Lubrication: Ensure that the worm gear system is properly lubricated according to the manufacturer’s recommendations. Regularly check the lubricant levels, cleanliness, and viscosity. Monitor and maintain the lubrication system, including oil reservoirs, filters, and seals. Replace the lubricant at recommended intervals or if it becomes contaminated or degraded.
  • Tighten fasteners: Over time, vibrations and operational forces can cause fasteners to loosen. Regularly check and tighten any bolts, screws, or clamps associated with the worm gear system. Be cautious not to overtighten, as it may lead to distortion or damage to the gear components.
  • Alignment: Check the alignment of the worm gear system periodically. Misalignment can cause excessive wear, increased friction, and reduced efficiency. Adjust and realign the gears if necessary to ensure proper meshing and minimize backlash.
  • Cleaning: Keep the worm gear system clean and free from debris, dirt, or contaminants. Regularly remove any accumulated dirt or particles that may affect the gear performance. Use appropriate cleaning methods and solvents that are compatible with the gear materials.
  • Load monitoring: Monitor the load conditions of the worm gear system. Ensure that the gear is not operating beyond its rated capacity or encountering excessive shock loads. If needed, consider implementing load monitoring devices or systems to prevent overloading and protect the gear system.
  • Periodic inspection and testing: Schedule periodic comprehensive inspections and functional testing of the worm gear system. This may involve disassembling components, checking for wear, measuring gear backlash, and evaluating overall performance. Identify and address any issues promptly to prevent further damage or failure.
  • Professional servicing: For complex or critical applications, it may be beneficial to involve a professional service provider or gear specialist for more extensive maintenance or repairs. They can offer expertise in diagnosing issues, performing advanced inspections, and conducting specialized repairs or replacements.

It’s important to follow the manufacturer’s recommendations and guidelines for maintaining and servicing the specific worm gear system. Adhering to proper maintenance practices helps ensure the gear’s optimal performance, reduces the risk of unexpected failures, and maximizes its operational lifespan.

worm gear

How do you address noise and vibration issues in a worm gear system?

Noise and vibration issues can arise in a worm gear system due to various factors such as misalignment, improper lubrication, gear wear, or resonance. Addressing these issues is important to ensure smooth and quiet operation of the system. Here’s a detailed explanation of how to address noise and vibration issues in a worm gear system:

1. Misalignment correction: Misalignment between the worm and the worm wheel can cause noise and vibration. Ensuring proper alignment of the gears by adjusting their positions and alignment tolerances can help reduce these issues. Precise alignment minimizes tooth contact errors and improves the meshing efficiency, resulting in reduced noise and vibration levels.

2. Lubrication optimization: Inadequate or improper lubrication can lead to increased friction and wear, resulting in noise and vibration. Using the correct lubricant with the appropriate viscosity and additives, and ensuring proper lubrication intervals, can help reduce friction and dampen vibrations. Regular lubricant analysis and replenishment can also prevent excessive wear and maintain optimal performance.

3. Gear inspection and replacement: Wear and damage to the gear teeth can contribute to noise and vibration problems. Regular inspection of the worm gear system allows for early detection of any worn or damaged teeth. Timely replacement of worn gears or damaged components helps maintain the integrity of the gear mesh and reduces noise and vibration levels.

4. Noise reduction measures: Various noise reduction measures can be implemented to minimize noise in a worm gear system. These include using noise-dampening materials or coatings, adding sound insulation or vibration-absorbing pads to the housing, and incorporating noise-reducing features in the gear design, such as profile modifications or helical teeth. These measures help attenuate noise and vibration transmission and improve overall system performance.

5. Resonance mitigation: Resonance, which occurs when the natural frequency of the system matches the excitation frequency, can amplify noise and vibration. To mitigate resonance, design modifications such as changing gear stiffness, altering the system’s natural frequencies, or adding damping elements can be considered. Analytical tools like finite element analysis (FEA) can help identify resonant frequencies and guide the design changes to reduce vibration and noise.

6. Isolation and damping: Isolation and damping techniques can be employed to minimize noise and vibration transmission to the surrounding structures. This can involve using resilient mounts or isolators to separate the gear system from the rest of the equipment or incorporating damping materials or devices within the gear housing to absorb vibrations and reduce noise propagation.

7. Tightening and securing: Loose or improperly tightened components can generate noise and vibration. Ensuring that all fasteners, bearings, and other components are properly tightened and secured eliminates sources of vibration and reduces noise. Regular inspections and maintenance should include checking for loose or worn-out parts and addressing them promptly.

Addressing noise and vibration issues in a worm gear system often requires a systematic approach that considers multiple factors. The specific measures employed may vary depending on the nature of the problem, the operating conditions, and the desired performance objectives. Collaborating with experts in gear design, vibration analysis, or noise control can be beneficial in identifying and implementing effective solutions.

worm gear

Can you explain the concept of worm and worm wheel in a worm gear?

In a worm gear system, the worm and worm wheel are the two primary components that work together to transmit motion and power. Here’s an explanation of the concept:

Worm:

The worm is a cylindrical shaft with a helical thread wrapped around it. It resembles a screw with a spiral groove. The helical thread is called the worm’s thread or worm thread. The worm is the driving component in the worm gear system.

When the worm rotates, the helical thread engages with the teeth of the worm wheel, causing the worm wheel to rotate. The angle of the helical thread creates a wedging action against the teeth of the worm wheel, resulting in a high gear reduction ratio.

One important characteristic of the worm is its self-locking nature. Due to the angle of the helical thread, the worm can drive the worm wheel, but the reverse is not true. The self-locking feature prevents the worm wheel from backdriving the worm, providing a mechanical brake or holding position in the system.

The worm can be made from various materials such as steel, bronze, or even plastics, depending on the application requirements. It is often mounted on a shaft and supported by bearings for smooth rotation.

Worm Wheel:

The worm wheel, also known as the worm gear, is the driven component in the worm gear system. It is a gear with teeth that mesh with the helical thread of the worm. The teeth on the worm wheel are typically helical and cut to match the angle and pitch of the worm’s thread.

As the worm rotates, its helical thread engages with the teeth of the worm wheel, causing the worm wheel to rotate. The rotation of the worm wheel is in the same direction as the worm’s rotation, but the speed is significantly reduced due to the high gear reduction ratio of the worm gear system.

The worm wheel is usually larger in diameter compared to the worm, allowing for a higher gear reduction ratio. It can be made from materials such as steel, bronze, or cast iron, depending on the application’s torque and durability requirements.

Together, the worm and worm wheel form a compact and efficient gear system that provides high gear reduction and self-locking capabilities. They are commonly used in various applications where precise motion control, high torque, and compactness are required, such as elevators, steering systems, and machine tools.

China factory Small Precision Worm Gear for Machinery Part raw gearChina factory Small Precision Worm Gear for Machinery Part raw gear
editor by CX 2024-03-26