Product Description

Model NO. Custom Parts Application Fastener, Auto and Motorcycle Accessories, Hardware Tool, Machinery Accessory
Standard GB, EN, China GB Code, JIS Code, TEMA, ASME Surface Treatment Anodizing
Production Type Mass Production Machining Method CNC Machining
Material Nylon, Steel, Plastic, Brass, Alloy, Copper, Aluminum, Iron Drawing Type Dwg, Dxf, Step, Iges, Pdf, STP, etc.
Tolerance +/-0.002mm, or Customized Roughness Ra0.2-Ra3.2 , or Customized
Surface Finish Anodization, Plating, Passivation, Polish, Brush Colors Blue, Red, Black, Gold, Orange, Green, Gray, White
Sample Service Available Part Name CNC Machining Parts
Service Machining, Assembly, Surface Treatment, etc. Dimensions Customized
Lead Time 1-4 Weeks Depends on Requests MOQ 1 PCS, But Over 100PCS Is a Price Break Point
Machining Capability 3,4,5 Axis CNC Milling, CNC Turning, Sheet Metal Price Negotiable as Per Request
Transport Package Foam, Carton Specification Custom dimension
Trademark Custom Origin China
HS Code 84799 0571 0 Production Capacity 50000PCS

 

 

Product Description

 

Parts Application Industrial Parts, Bikes, Engine parts, Robotic Parts, Decoration, BMX, EDC, yoyo, CHINAMFG parts, Electronics aluminum parts, Toys parts, Gears, Car parts, 4X4 parts, Medical Parts. Oil industry parts.
Audio equipment parts, Musical Instrument parts
Machining Tolerance The best tolerance is +/-0.002mm, can do as per your request.
Roughness Ra0.2-Ra3.2, (as per specification)
Quotation Need to know material, quantity, surface treatment, and another special request before sending you a quotation
Software Available CAD, CHINAMFG Works, UG, CAD/CAM/CAE, PDF.
Surface Finish Matte, Glossy, Tumbling, Smooth, beadblasting.
Surface Treatment Anodization, Plating, Passivation, Polishing, Brushing.
Materials Available Aluminum, Brass, Copper, Stainless Steel, Titanium, PVC, ABS, PEEK, Nylon, Delrin, Acrylic, Steel
Inspection instruments Height Gauge, CMM, Caliper, Electronics Scale, Micrometer/Microcaliper, Gage Blocks, Pin Gauge.
Service Available 1. CNC machining, CNC milling, CNC turning, Sheet Metal, Laser cutting, 
2. Assemble (Using press fit or other technology),
3. Packing for “ready to sale” products, 
4. Customized Packaging,
5. Relative accessory purchasing.

Sample Parts Show

Why Choose us

Our Equipments

Test Report Sample

Certifications

Our Package

FAQ

Q1. Are you a genuine manufacturer?
Yes, all the products are produced in our ISO9001:2015 certified factory; We are also a company registered by China Customs with the right to export and import.
 
Q2. What should I offer to get your quotation?
Please offer us your detailed information for the product, such as drawings with 2D/3D by software Pro/E, Auto CAD, SolidWorks, UG etc; as well as materials, surface treatment, quantity, package. Any special requirements should be highlighted especially for tolerance.
 
Q3. Can we get a complete product besides CNC parts?
To some extent, yes, we can. But firstly we need assess feasibility.
 
Q4. What’s your top process tolerance?
Now our top process tolerance is ± 0.005mm.
 
Q5. What are your sample policy and trade/payment terms?
We can offer the free samples with total value less than USD10; while the buyers should bear shipping cost and import VAT. 
Ex-works, FOB ZheJiang /HangZhou, CIF etc. would be OK for us.
As for the payment, small value is recommended by Paypal or Western Union; larger amount by T/T, 50% as deposit, 50% before shipment.
 
Q6. How about the warranty?
The warranty is for 1 year. As you know, our CNC parts have a long lifespan except for damaged by operating inappropriately.
 
Q7. What’s your policy for RMA?
All defective products should be confirmed by us based on the customers’ RMA list and photos first, then we’d like to refund the money or compensate the goods by free of charge accordingly.
 
Q8. I want to keep our design in confidence; can we CHINAMFG NDA?
Sure, to protect customers’ profit is our obligatory responsibility, signed NDA would be valid to both of us.
.
What benefit we can get from you?
1) Competitive price
2) High quality control : 100% full inspection before shipment
3) High precision, tolerance can be ± 0.005mm
4) Fast lead time (5-7days for samples, 12-15 days for mass production)
5) Non-standard//OEM//customized service provided
6) No MOQ, small QTY is acceptable.
7) Factory ISO 9001 certification, ROHS material used
9) Professional export packing: separate Blister plastic box or Bubble Wrap/Pearl Wool +Carton+ Wooden Case, keep no scratch and damage

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard: GB
Surface Treatment: Anodizing, Painting, Phosphating, Passivation…
Customization: Yes
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

worm gear

Can you provide examples of machinery that use worm gears?

Worm gears are utilized in various machinery and mechanical systems where precise motion control, high gear reduction ratios, and self-locking capabilities are required. Here are some examples of machinery that commonly use worm gears:

  • Elevators: Worm gears are commonly employed in elevator systems to control the vertical movement of the elevator car. The high gear reduction ratio provided by worm gears allows for smooth and controlled lifting and lowering of heavy loads.
  • Conveyor systems: Worm gears are used in conveyor systems to drive the movement of belts or chains. The self-locking nature of worm gears helps prevent the conveyor from back-driving when the power is turned off, ensuring that the materials or products being transported stay in place.
  • Automotive applications: Worm gears can be found in automotive steering systems. They are often used in the steering gearboxes to convert the rotational motion of the steering wheel into lateral movement of the vehicle’s wheels. Worm gears provide mechanical advantage and precise control for steering operations.
  • Milling machines: Worm gears are utilized in milling machines to control the movement of the worktable or the spindle. They offer high torque transmission and accurate positioning, facilitating precise cutting and shaping of materials during milling operations.
  • Lifts and hoists: Worm gears are commonly employed in lifting and hoisting equipment, such as cranes and winches. Their high gear reduction ratio allows for the lifting of heavy loads with minimal effort, while the self-locking property prevents the load from descending unintentionally.
  • Rotary actuators: Worm gears are used in rotary actuators to convert linear motion into rotary motion. They are employed in various applications, including valve actuators, robotic arms, and indexing mechanisms, where controlled and precise rotational movement is required.
  • Packaging machinery: Worm gears find application in packaging machinery, such as filling machines and capping machines. They assist in controlling the movement of conveyor belts, rotating discs, or cam mechanisms, enabling accurate and synchronized packaging operations.
  • Printing presses: Worm gears are utilized in printing presses to control the paper feed and the movement of the printing plates. They provide precise and consistent motion, ensuring accurate registration and alignment of the printed images.

These are just a few examples, and worm gears can be found in many other applications, including machine tools, textile machinery, food processing equipment, and more. The unique characteristics of worm gears make them suitable for various industries where motion control, high torque transmission, and self-locking capabilities are essential.

worm gear

What are the potential challenges in designing and manufacturing worm gears?

Designing and manufacturing worm gears can present several challenges due to their unique characteristics and operating conditions. Here’s a detailed explanation of the potential challenges involved:

  1. Complex geometry: Worm gears have complex geometry with helical threads on the worm shaft and corresponding teeth on the worm wheel. Designing the precise geometry of the gear teeth, including the helix angle, lead angle, and tooth profile, requires careful analysis and calculation to ensure proper meshing and efficient power transmission.
  2. Gear materials and heat treatment: Selecting suitable materials for worm gears is critical to ensure strength, wear resistance, and durability. The materials must have good friction and wear properties, as well as the ability to withstand the sliding and rolling contact between the worm and the worm wheel. Additionally, heat treatment processes such as carburizing or induction hardening may be necessary to enhance the gear’s surface hardness and improve its load-carrying capacity.
  3. Lubrication and cooling: Worm gears operate under high contact pressures and sliding velocities, resulting in significant heat generation and lubrication challenges. Proper lubrication is crucial to reduce friction, wear, and heat buildup. Ensuring effective lubricant distribution to all contact surfaces, managing lubricant temperature, and providing adequate cooling mechanisms are important considerations in worm gear design and manufacturing.
  4. Backlash control: Controlling backlash, which is the clearance between the worm and the worm wheel, is crucial for precise motion control and positional accuracy. Designing the gear teeth and adjusting the clearances to minimize backlash while maintaining proper tooth engagement is a challenge that requires careful consideration of factors such as gear geometry, tolerances, and manufacturing processes.
  5. Manufacturing accuracy: Achieving the required manufacturing accuracy in worm gears can be challenging due to their complex geometry and tight tolerances. The accurate machining of gear teeth, maintaining proper tooth profiles, and achieving the desired surface finish require advanced machining techniques, specialized tools, and skilled operators.
  6. Noise and vibration: Worm gears can generate noise and vibration due to the sliding contact between the gear teeth. Designing the gear geometry, tooth profiles, and surface finishes to minimize noise and vibration is a challenge. Additionally, the selection of appropriate materials, lubrication methods, and gear housing design can help reduce noise and vibration levels.
  7. Efficiency and power loss: Worm gears inherently have lower efficiency compared to other types of gear systems due to the sliding contact and high gear ratios. Minimizing power loss and improving efficiency through optimized gear design, material selection, lubrication, and manufacturing accuracy is a challenge that requires careful balancing of various factors.
  8. Wear and fatigue: Worm gears are subjected to high contact stresses and cyclic loading, which can lead to wear, pitting, and fatigue failure. Designing the gear teeth for proper load distribution, selecting appropriate materials, and applying suitable surface treatments or coatings are essential to mitigate wear and fatigue issues.
  9. Cost considerations: Designing and manufacturing worm gears can be cost-intensive due to the complexity of the gear geometry, material requirements, and precision manufacturing processes. Balancing performance requirements with cost considerations is a challenge that requires careful evaluation of the gear’s intended application, performance expectations, and budget constraints.

Addressing these challenges requires a comprehensive understanding of gear design principles, manufacturing processes, material science, and lubrication technologies. Collaboration between design engineers, manufacturing experts, and material specialists is often necessary to overcome these challenges and ensure the successful design and production of high-quality worm gears.

worm gear

Understanding Worm Gears and Their Operation

A worm gear is a type of mechanical gear that consists of a threaded screw-like component (called the worm) and a toothed wheel (called the worm gear). It is used to transmit motion between non-intersecting and perpendicular shafts. Here’s how it works:

The worm, typically in the form of a cylindrical rod with a helical thread, meshes with the teeth of the worm gear. When the worm is rotated, its threads engage with the teeth of the worm gear, causing the gear to rotate. The direction of rotation of the worm gear is perpendicular to the axis of the worm.

One significant feature of worm gears is their ability to provide high gear reduction ratios. The number of teeth on the worm gear relative to the number of threads on the worm determines the reduction ratio. This makes worm gears suitable for applications where high torque and low-speed rotation are required.

Worm gears are commonly used in various mechanical systems, such as conveyor systems, lifts, automotive steering mechanisms, and more. Their unique design also provides a self-locking feature: when the system is not actively rotating the worm, the gear cannot easily backdrive the worm due to the angle of the threads, providing mechanical advantage and preventing reverse motion.

China supplier Free Sample Large Plastic Gear Rack and Pinion CNC Machining POM Nylon Parts Peek Small Planetary Gears Spur Worm Gear Set hypoid bevel gearChina supplier Free Sample Large Plastic Gear Rack and Pinion CNC Machining POM Nylon Parts Peek Small Planetary Gears Spur Worm Gear Set hypoid bevel gear
editor by CX 2024-03-01