Product Description

We are committed to researching, developing and applying high quality, precision transmission equipment products,who provides reliable mechanical actuator for horizonal single axis, dual-axis photovoltaic tracking system, CSP, CPV solar tracking design.

Model

VH9

Place of Origin

HangZhou,China

Brand

Coresun Drive

Type

Vertical

Material

42CrMo,50Mn

Output Torque

6405N.m

Tilting Moment Torque

12KN.m

Holding Torque

56KN.m

Static Axial Rating

350KN

Static Radial Rating

120KN

Dynamic Axial Rating

168KN

Dynamic Radial Rating

65KN

Gear Ratio

61:1

Efficiency

40%

Coresun Drive slewing drive gear motor worm drive for horizontal single-axis solar tracking system. For horizontal single-axis solar tracking system, the main shaft of solar panel will adjust the angle to precisely track the declination angle. This kind of slewing drive is only applied for low latitudes area.

Coresun Drive slewing drive is used for the solar tracker with the highest yield-per-acre performance and greatest land-use options, ideal for large-scale PV projects. Those features combined with proven cost-effective installation and operation.

Worm Gear Slewing Drive for Solar Tracker. Single axis trackers. Single axis trackers have one degree of freedom that acts as an axis of rotation. The axis of rotation of single axis trackers is typically aligned along a true North meridian. 

 

About Us

Coresun – Practical Slewing Drive & Slewing Bearing Promoter.

We are committed to researching, developing and applying high quality, precision transmission equipment products,who provides reliable mechanical actuator for horizonal single axis, dual-axis photovoltaic tracking system, CSP,CPV solar tracking design.Our professional and high-quality products will be also applied well as a steady solution on aerial working platform, truck crane, timber grab, drilling rig, spray equipment, hydraulic module vehicle,automated assembly lines, wind yaw systems,etc.
 

1. Our company’s worm gear reducer (slewing drive device) adopts the transmission mode of plane secondary enveloping ring surface worm combined with slewing support, which can realize multi-tooth meshing.

2. On the premise of not affecting the performance of the whole device, we improved and optimized it, and its overall thickness became thinner and weight became lighter.

3. The rotary device at the center is a through hole for the customer to use. The original product is solid.

4. The worm material is 42CrMo, the secondary nitride treatment, the slewing bearing material is 50Mn, the teeth are quenched, and its wear resistance is good.
 

Tilting Moment Torque: Torque is the load multiplied by distance between the position of load and the center of slewing bearing. If the qorque generated by load and distance is greater than the rated tilting moment torque, slewing drive will be overturned.

Radial load: Load vertical to the axis of slewing bearing

Axial load: Load parallel to the axis of slewing bearing

Holding torque:It is the reverse torque.When the drive is rotating reversely, and parts are not damaged,The maximum torque achieved is called holding torque.

Self-locking: Only when loaded, the slewing drive is not able to reverse rotate and thus called self-loc

Products Photo

Application

Photovoltaic power generation is an important application field of rotary drive, using slewing drive VH9 as a rotating component of solar photovoltaic modules, according to the position of the sun in a day to the host of the angle and elevation of accurate adjustment, time is the solar panel for better reception angle, can make greater efficiency of power generation.


Products Certificate

Coresun Drive slewing drive gear motor have arroved by CE and ISO2001 certificate.

CONTACT US

It is sincerely looking CHINAMFG to cooperating with you for and providing you the best quality product & service with all of our heart!

Feature: Corrosion-Resistant
Step: Double-Step
Openness: Closed
Installation: Vertical
Transmission Form: Worm
Type: Single-Row Ball
Customization:
Available

|

Customized Request

worm gear

Can you provide examples of machinery that use worm gears?

Worm gears are utilized in various machinery and mechanical systems where precise motion control, high gear reduction ratios, and self-locking capabilities are required. Here are some examples of machinery that commonly use worm gears:

  • Elevators: Worm gears are commonly employed in elevator systems to control the vertical movement of the elevator car. The high gear reduction ratio provided by worm gears allows for smooth and controlled lifting and lowering of heavy loads.
  • Conveyor systems: Worm gears are used in conveyor systems to drive the movement of belts or chains. The self-locking nature of worm gears helps prevent the conveyor from back-driving when the power is turned off, ensuring that the materials or products being transported stay in place.
  • Automotive applications: Worm gears can be found in automotive steering systems. They are often used in the steering gearboxes to convert the rotational motion of the steering wheel into lateral movement of the vehicle’s wheels. Worm gears provide mechanical advantage and precise control for steering operations.
  • Milling machines: Worm gears are utilized in milling machines to control the movement of the worktable or the spindle. They offer high torque transmission and accurate positioning, facilitating precise cutting and shaping of materials during milling operations.
  • Lifts and hoists: Worm gears are commonly employed in lifting and hoisting equipment, such as cranes and winches. Their high gear reduction ratio allows for the lifting of heavy loads with minimal effort, while the self-locking property prevents the load from descending unintentionally.
  • Rotary actuators: Worm gears are used in rotary actuators to convert linear motion into rotary motion. They are employed in various applications, including valve actuators, robotic arms, and indexing mechanisms, where controlled and precise rotational movement is required.
  • Packaging machinery: Worm gears find application in packaging machinery, such as filling machines and capping machines. They assist in controlling the movement of conveyor belts, rotating discs, or cam mechanisms, enabling accurate and synchronized packaging operations.
  • Printing presses: Worm gears are utilized in printing presses to control the paper feed and the movement of the printing plates. They provide precise and consistent motion, ensuring accurate registration and alignment of the printed images.

These are just a few examples, and worm gears can be found in many other applications, including machine tools, textile machinery, food processing equipment, and more. The unique characteristics of worm gears make them suitable for various industries where motion control, high torque transmission, and self-locking capabilities are essential.

worm gear

How do you address noise and vibration issues in a worm gear system?

Noise and vibration issues can arise in a worm gear system due to various factors such as misalignment, improper lubrication, gear wear, or resonance. Addressing these issues is important to ensure smooth and quiet operation of the system. Here’s a detailed explanation of how to address noise and vibration issues in a worm gear system:

1. Misalignment correction: Misalignment between the worm and the worm wheel can cause noise and vibration. Ensuring proper alignment of the gears by adjusting their positions and alignment tolerances can help reduce these issues. Precise alignment minimizes tooth contact errors and improves the meshing efficiency, resulting in reduced noise and vibration levels.

2. Lubrication optimization: Inadequate or improper lubrication can lead to increased friction and wear, resulting in noise and vibration. Using the correct lubricant with the appropriate viscosity and additives, and ensuring proper lubrication intervals, can help reduce friction and dampen vibrations. Regular lubricant analysis and replenishment can also prevent excessive wear and maintain optimal performance.

3. Gear inspection and replacement: Wear and damage to the gear teeth can contribute to noise and vibration problems. Regular inspection of the worm gear system allows for early detection of any worn or damaged teeth. Timely replacement of worn gears or damaged components helps maintain the integrity of the gear mesh and reduces noise and vibration levels.

4. Noise reduction measures: Various noise reduction measures can be implemented to minimize noise in a worm gear system. These include using noise-dampening materials or coatings, adding sound insulation or vibration-absorbing pads to the housing, and incorporating noise-reducing features in the gear design, such as profile modifications or helical teeth. These measures help attenuate noise and vibration transmission and improve overall system performance.

5. Resonance mitigation: Resonance, which occurs when the natural frequency of the system matches the excitation frequency, can amplify noise and vibration. To mitigate resonance, design modifications such as changing gear stiffness, altering the system’s natural frequencies, or adding damping elements can be considered. Analytical tools like finite element analysis (FEA) can help identify resonant frequencies and guide the design changes to reduce vibration and noise.

6. Isolation and damping: Isolation and damping techniques can be employed to minimize noise and vibration transmission to the surrounding structures. This can involve using resilient mounts or isolators to separate the gear system from the rest of the equipment or incorporating damping materials or devices within the gear housing to absorb vibrations and reduce noise propagation.

7. Tightening and securing: Loose or improperly tightened components can generate noise and vibration. Ensuring that all fasteners, bearings, and other components are properly tightened and secured eliminates sources of vibration and reduces noise. Regular inspections and maintenance should include checking for loose or worn-out parts and addressing them promptly.

Addressing noise and vibration issues in a worm gear system often requires a systematic approach that considers multiple factors. The specific measures employed may vary depending on the nature of the problem, the operating conditions, and the desired performance objectives. Collaborating with experts in gear design, vibration analysis, or noise control can be beneficial in identifying and implementing effective solutions.

worm gear

What is the purpose of a self-locking feature in a worm gear?

A self-locking feature in a worm gear serves the purpose of preventing reverse motion or backdriving of the gear system. When a worm gear is self-locking, it means that the worm can rotate the worm wheel, but the reverse action is hindered or restricted, providing a mechanical holding or braking capability. This self-locking feature offers several advantages and is utilized in various applications. Here are the key purposes of the self-locking feature:

  • Mechanical Holding: The self-locking capability of a worm gear allows it to hold a specific position or prevent unintended movement when the worm is not actively driving the system. This is particularly useful in applications where it is necessary to maintain a fixed position or prevent the gear from rotating due to external forces or vibrations. Examples include elevators, lifts, and positioning systems.
  • Backdriving Prevention: The self-locking feature prevents the worm wheel from driving the worm in the reverse direction. This is advantageous in applications where it is crucial to prevent a load or external force from causing the gear to rotate backward. For instance, in a lifting mechanism, the self-locking feature ensures that the load remains suspended without requiring continuous power input.
  • Enhanced Safety: The self-locking property of a worm gear contributes to safety in certain applications. By preventing unintended or undesired motion, it helps maintain stability and reduces the risk of accidents or uncontrolled movement. This is particularly important in scenarios where human safety or the integrity of the system is at stake, such as in heavy machinery or critical infrastructure.

It’s important to note that not all worm gears are self-locking. The self-locking characteristic depends on the design parameters, specifically the helix angle of the worm’s thread. A higher helix angle increases the self-locking tendency, while a lower helix angle reduces or eliminates the self-locking effect. Therefore, when selecting a worm gear for an application that requires the self-locking feature, it is essential to consider the specific design parameters and ensure that the gear meets the necessary requirements.

China Hot selling PV Solar Panels Tracker Rotation Gear with Hot sellingChina Hot selling PV Solar Panels Tracker Rotation Gear with Hot selling
editor by CX 2023-09-17